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Introduction

FiMDP [https://github.com/FiMDP/FiMDP] is a Python package for analysis and controller synthesis of Markov decision processes with resource constraints,
modeled as Consumption Markov Decision Processes (ConsMDPs). The model of ConsMDPs and associated algorithms were first introduced in
our work titled Qualitative Controller Synthesis for Consumption Markov Decision Processes presented at CAV2020  Citation Info.

This package includes interactive Jupyter notebooks with examples from FiMDPEnv [https://github.com/FiMDP/FiMDPEnv], our related project that provides
realistic simulation environments that model real-world ConsMDPs. The package also includes tutorials designed to help you get started with our tool.




Authors

This package is developed and maintained by František Blahoudek [https://www.linkedin.com/in/fanda-blahoudek-392a6752], and
Pranay Thangeda [https://www.pranaythangeda.com/]. Contact information is provided in the section Support.




Note

This overview assumes no background in the topic and tries to explains the problem in layman terms. For a detailed explanation of our work,
please go through our paper Citation Info.



Several real-world systems of interest are resource constrained, i.e., they utilize certain resource from a limited supply that must be replenished regularly.
For example, autonomous electric systems such as driverless cars, autonomous drones, planetary rovers, etc, are constrained by design to operate on power drawn
from a battery of limited capacity and resource exhaustion could potentially lead to several undesirable consequences including safety hazards. Further, such
systems usually operate in uncertain environments with stochastic dynamics that can be effectively modeled as Markov decision process (MDPs).

Traditionally, resource-constrained systems were studied using so called energy based models that are known not to admit
polynomial-time controller synthesis algorithms. We instead build up-on so called consumption models that typically admit
more efficient analysis and extend it to probabilistic setting. A consumption MDP (ConsMDP) is then characterized
by an MDP that models the stochastic environment, the capacity of the agent, and the initial resource level. Given a ConsMDP with no zero-consumption cycles, and a set
of target states, we show that we can prove in polynomial time the existence of a strategy that prevents resource exhaustion and
visits some target states infinitely often. If such a strategy exists, we provide its polynomial-size representation in polynomial-time.
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Documentation

This section provides the documentation of all the modules in the package.


fimdp.core module

Core module defining basic data structures and classes of the FiMDP package.

It defines the class for representation of Consumption Decision Processes,
the interface for strategies (including exceptions), and Counter-strategies
(and the needed building blocks). Further, it provides support for ConsMDPs
that represent a product with some input ConsMDP and some other component
(explicit energy, automaton, …).

## Consumption Markov Decision Processes (CMDPs)

See our [CAV paper] for the theoretical backgrounds.


	The classes needed for representation of (CMDPs) are:

	
	ConsMDP: represent an CMDP object


	ActionData: represent actions of CMDPs








The ProductConsMDP are ConsMDPs with states fromed by 2 components.

## Interface for strategies

A strategy should offer strategy.next_action() that picks an action based
on history, and the function strategy.update_state(outcome) which tells the
strategy that the last action was resolved to the state outcome — which
becomes the new current state. Each call to next_action() should be
followed by a call to update_state and vice versa. Both functions raise
WrongCallOrderError if the calls do not alternate.

To simplify code, strategy.next_action(outcome) is a shorthand for

>>> strategy.update_state(outcome)
>>> strategy.next_action()





The function update_state(outcome) raises a ValueError if outcome is
not a valid successor for the last action returned by next_action(). Based
on the outcome, the strategy can update its memory.

The strategy can be used in a new play using strategy.reset() which allows
new initialization of initial state and memory.

The class Strategy implements the basic interface for strategies, but it
neither updates any memory nor picks actions. Its subclasses should override
the function ._next_action() and (when using memory) also ._update(outcome).

## Counter-strategies

The main ingredient of a counter strategy is a counter selector. A counter
selector is a mapping from states to selection rules. A selection rule
selects actions based on given energy level. See, again, out [CAV paper] for
details.

The classes CounterStrategy, CounterSelector, and SelectionRule implement
the respective objects as described in the paper.

ProductSelector and ProductSelectorWrapper are two selectors that can be
used to hide the product construction from the user and maps actions and
states of a ProductConsMDP into states and actions of the original ConsMDP.

[CAV paper]: https://link.springer.com/chapter/10.1007/978-3-030-53291-8_22


	
class fimdp.core.ActionData(src, cons, distr, label, next_succ)

	Bases: object

Holds data of an action in ConsMDP.


	The defining attributes of an action are:

	
	source state src


	consumption cons,


	the successors probability distribution distr,


	the action label








The attribute next_succ is used to keep a nested linked-list of actions
with the same src.


	
get_succs()

	








	
class fimdp.core.ConsMDP(layout=None)

	Bases: object

Represent Markov Decision Process with consumption on actions.

States are represented by integers and actions are represented by
ActionData objects. To add an action, use add_action. To iterate over
actions of a state s use actions_for_state(s). If you wish to remove
actions during the iteration, use out_iteraser(s) instead. There is
also remove_action which requires an action id. See implementation
details for further info.

States can have names using the list names. Reload states are stored
in the set reload_states.


Important

Functions that change the structure of the consMDP should always call
self.structure_change().

The action objects are stored in a sparse-matrix fashion using two
vectors: succ and actions. The latter is just a list of ActionData
objects stored in the order in which the actions were created. Using
the ActionData.next_succ the actions form a linked-list of actions
for each state (that is how actions_for_state(s) work internally).
The vector succ serves to locate the first action in this linked-list
for given state (actions[succ[s]] hold the first action of s).

Do not modify the two vectors directly. Always use ConsMDP.add_action
to add and ConsMDP.remove_action or ConsMDP.out_iteraser(s) to remove
actions.




	Parameters

	layout (str or None (default)) – one of the Graphviz engines to compute graph layouts (“dot”, “neato”,
“twopi”, “circo”). The engine “dot” is used if layout is not
specified. The layout can be later changed using the attribute
ConsMDP.dot_layout.






	
actions_for_state(s)

	Return iterator of actions available for state s.






	
add_action(src, distribution, label, consumption=0)

	Add action to consMDP.

Returns: index of the new action in the actions list.
:raises: * * ValueError if attempt to use non-existent state



	* ValueError if src-label->… exists already.












	
get_dot(options='')

	




	
is_reload(sid)

	Return the reload status of state sid.






	
new_state(reload=False, name=None)

	Add a new state into the CMDP.

Returns: the id of the created state
Raise ValueError if a state with the same name already exists.






	
new_states(count, names=None)

	Create multiple (count) states.

The list names must have length count if supplied. These will be
the names for the states.

Return the list of states ids.
Raise ValueError if a state with the same name already exists.






	
out_iteraser(s)

	Return iterator of actions available for state s that allows
action removal.






	
remove_action(aid)

	Remove action based on its id.






	
set_reload(s, reload=True)

	Set reload status of given state(s).

If s is a list, set all of them as reloading states. By setting
reload=False, the states will be removed from reloading staes.






	
show(options='', targets=None, max_states=None)

	




	
state_succs(s)

	Return successors of s over all actions






	
state_with_name(name)

	Return id of state with name name or None if not exists.






	
structure_change()

	








	
class fimdp.core.CounterSelector(mdp, values=None)

	Bases: list

CounterSelector selects actions based on given state and energy level.


	Counter selector is a list of SelectionRules extended by:

	
	pointer to the corresponding mdp, and


	
	2 functions for updating and accessing actions to be taken:

	
	update(state, energy_level, action)


	select_action(state, energy)

















	
copy_values_from(other, state_subset=None)

	Replace values for given state_subset by values from other counter
selector.

If state_subset is not given (or is None), replace values for all
states.






	
select_action(state, energy)

	Return action selected for state and energy






	
update(state, energy_level, action)

	Update the action for given state and energy_level to action.

energy_level is a lower bound of an interval for which action
will be selected by select_action.

Raises ValueError if product_action is not an action of
product_state










	
class fimdp.core.CounterStrategy(mdp, selector, capacity, init_energy, init_state=None, *args, **kwargs)

	Bases: fimdp.core.Strategy

Counter strategy tracks energy consumption in memory and chooses next
action based on the current state and the current energy level.

This class implements the memory and its updates. The selection itself is
delegated to selector. The attributes capacity and init_energy are
needed to track the energy level correctly.

The implementation is suited to use CounterSelector as selector, but can
take anything that implements select_action(state, energy).






	
exception fimdp.core.NoFeasibleActionError

	Bases: Exception






	
class fimdp.core.PickFirstStrategy(mdp, init_state=None, *args, **kwargs)

	Bases: fimdp.core.Strategy

Class for testing and presentation purposes.

Always picks the first available action of the CMDP. Does not track energy
and does not give any guarantees.






	
class fimdp.core.ProductConsMDP(orig_mdp, other=None)

	Bases: fimdp.core.ConsMDP

CMDP with states that have two components.

We call the two components orig_mdp and other, where orig_mdp is
some ConsMDP object and other can be arbitrary domain, for example
deterministic Büchi automaton, or upper bound of some integer interval.
The orig_mdp and other store pointers to the objects of origin for


the product mdp (if supplied).




The function orig_action maps actions in this object into actions of
the source ConsMDP object. Similarly,  other_action works for the other
object (if makes sense).


	
add_action(src, distribution, label, consumption, orig_action, other_action=None)

	Create a new action in the product using (src, distribution, label,
consumption) and update mappings to orig_action and other_action.


	Parameters

	
	src – src in product


	distribution – distribution in product


	label – label of the action


	consumption – consumption in product


	orig_action – ActionData object from the original mdp


	other_action – Value to be returned by other_action for the new








action.
:return: action id in the product






	
get_or_create_state(orig_s, other_s)

	Return state of product based on the two components (orig_s, other_s)
and create one if it does not exist.


	Parameters

	
	orig_s – state_id on the original mdp


	other_s – state of the other component






	Returns

	id of state (orig_s, other_s)










	
get_state(orig_s, other_s)

	Return state of product based on the two components (orig_s, other_s)
if exists and None otherwise.


	Parameters

	
	orig_s – state_id on the original mdp


	other_s – state of the other component






	Returns

	id of state (orig_s, other_s) or None










	
new_state(orig_s, other_s, reload=False, name=None)

	Create a new product state (orig_s, other_s).


	Parameters

	
	orig_s – state_id in the original mdp


	other_s – state of the other component


	reload – is state reloading? (Bool)


	name – a custom name of the state, orig_s,other_s by default.






	Returns

	id of the new state










	
orig_action(action)

	Decompose the action from the product to the action in the original mdp.


	Parameters

	action – ActionData from product (as used in for loops)



	Returns

	ActionData from the original mdp










	
other_action(action)

	Decompose the action from the product onto the second component, if
defined.


	Parameters

	action – ActionData from product (as used in for loops)



	Returns

	value supplied on creation of action (if any), or None














	
class fimdp.core.ProductSelector(product_mdp: fimdp.core.ProductConsMDP)

	Bases: dict

Selector suited for ConsMDPs whose analysis requires a product ConsMDP.

It combines the approach of CounterSelector with decomposition of the
product states and actions into the original components and works for
selection even after destruction of the product MDP. The intended use is
as follows.

For a MDP called orig and some other object, we build product MDP.
The analysis of product calls ProductSelector.update() with states
and actions belonging to the product MDP. For selection of the next
action, ProductSelector.select_action should be called with
orig_state and other_state that belong to orig and other and no
translation from/to product states is needed. Indeed, the translation
happens directly on update.

In short, based on information what action should be picked in a product
(supplied using update), ProductSelector selects actions of the original
mdp (at the time `select_action is called).

It is implemented as 2-dimensional dict (other × orig) to SelectionRules.
The reason for dicts instead of lists is that the product can be sparse.


	
copy_values_from(other, product_state_subset=None)

	Replace values by values from other ProductSelector.

If product_state_subset is not given (or is None), replace values for
all states. Otherwise, replaces only those values that correspond to
the given states from the product.






	
select_action(orig_state, other_state, energy)

	Return action selected for orig_state×other_state and energy.






	
update(product_state, energy_level, product_action)

	For given state of product with components (orig, other) update the
selection rule for selector[other][orig] with rule[energy]=action
where action belongs to orig and corresponds to product_action.

energy_level` is a lower bound of an interval for which action
will be selected by select_action.

Raises ValueError if product_action is not an action of
product_state










	
class fimdp.core.ProductSelectorWrapper(mdp: fimdp.core.ProductConsMDP, product_selector=None)

	Bases: fimdp.core.CounterSelector

Selector suited for ConsMDPs whose analysis requires a product ConsMDP.

The ProductSelectorWrapper is a wrapper around CounterSelector built
for the product and the ProductSelectorWrapper translates the states of
the product into their two components (state, other_state) and back.
The same applies to actions.

The main purpose of the selector is to provide interface that is
accessible without the knowledge of the product. Therefore, it selects
actions based on:



	state of the original mdp (before product),


	state of the other component, and


	energy level.







The actions returned by select_action are actions of the original mdp.


	
select_action(state, other_state, energy)

	Return action selected for state and energy










	
class fimdp.core.SelectionRule

	Bases: dict

Selection rule is a partial function: ℕ → Actions.

Intuitively, a selection according to rule φ selects the action
that corresponds to the largest value from dom(φ) that  is  not
larger than the given energy level.

For dom(φ) = n₁ < n₂ < … < n_k and energy level e the selection
returns φ(n_i) where i is largest integer such that n_i <= e.


	
copy() → a shallow copy of D

	




	
select_action(energy)

	Select action for given energy level.


	Parameters

	energy – energy level



	Returns

	action selected by the rule for energy



	Raise

	NoFeasibleActionError if no action can be selected for the
given energy














	
class fimdp.core.Simulator(strategy, num_steps=0)

	Bases: object

Class for simulating a strategy object on a ConsMDP.

Picks actions based on given strategy for num_steps of simulation steps
and stores the state and action history for further analysis. Interface
allows for extending simulation and resetting given instance using
simulate and reset methods.


	
reset(init_state=None, *args, **kwargs)

	Prepare a new simulation with the same strategy.

The arguments are passed to strategy.reset functions. We can thus
change the initial state or the initial energy in the case of Counter
strategies.

If no init_state is given, the previous initial state is reused






	
simulate(num_steps)

	Continue the simulation for additional num_steps steps.










	
class fimdp.core.Strategy(mdp, init_state=None, *args, **kwargs)

	Bases: object

Abstract class that implements the interface for strategies (see the
docstring for the strategy.py module). It handles the checks for
outcomes and alternation of calls to .next_action and .update_state.

Calls to .next_action() and .update_state(outcome) should alternate
unless next_action(outcome) are used exclusively.


	
next_action(outcome=None)

	Pick the next action to play


	Parameters

	outcome – sid (state id) or None (default None)
outcome must be a successor of the action picked by the last call
to .next_action(). If defined, update the current state to
outcome.



	Returns

	action to play










	
reset(init_state=None, *args, **kwargs)

	Reset the memory and initial state for a new play.






	
update_state(outcome)

	Tells the strategy that the last action picked by next_action was
resolved to outcome.


	Parameters

	outcome – sid (state id)
outcome must be a successor of the action picked by the last call
to .next_action().














	
exception fimdp.core.WrongCallOrderError

	Bases: Exception








fimdp.distribution module

Module that defines probability distributions and distributions-related
functions.

A distribution is a mapping from states (integers) to probability values where
the values sum up to 1.


	
fimdp.distribution.is_distribution(distribution)

	Checks if the given mapping is a probability distribution (sums up to 1).


	Parameters

	distribution (a mapping from integers to probabilities) – 



	Returns

	



	Return type

	True if values in distribution sum up to 1.










	
fimdp.distribution.uniform(destinations)

	Create a uniform distribution for given destinations.

destinations: iterable of states








fimdp.dot module

Core module defining the functions for converting a consumption Markov Decision
Process from consMDP model to dot representation and present it.


	
class fimdp.dot.consMDP2dot(mdp, solver=None, options='')

	Bases: object

Convert consMDP to dot


	
add_incomplete(s)

	Adds a dashed line from s to a dummy … node for the given state s.






	
add_legend()

	




	
finish()

	




	
get_dot()

	




	
get_state_name(s)

	




	
process_action(a)

	




	
process_state(s)

	




	
start()

	








	
fimdp.dot.dot_to_svg(dot_str, mdp=None)

	Send some text to dot for conversion to SVG.








fimdp.energy_solvers module

Module with energy-aware qualitative solvers for Consumption MDPs


	Currently, the supported objectives are:

	
	minInitCons: reaching a reload state within >0 steps


	safe       : survive from s forever


	
	positiveReachability(T)survive and the probability of reaching

	some target from T is positive (>0)







	
	almostSureReachability(T): survive and the probability of reaching

	some target from T is 1







	Büchi(T) : survive and keep visiting T forever (with prob. 1).






	The results of a solver for an objective o are twofolds:

	
	For each state s we provide value o[s] which is the minimal initial
load of energy needed to satisfy the objective o from s.


	Corresponding strategy that, given at least o[s] in s guarantees that
o is satisfied.








The computed values o[s] from 1. can be visualized in the mdp object by
setting mdp.EL=solver and then calling mdp.show().


	
class fimdp.energy_solvers.BasicES(mdp, cap, targets)

	Bases: object

Solve qualitative objectives for Consumption MDPs.

This implements the algorithms as described in the paper
Qualitative Controller Synthesis for Consumption Markov Decision Processes


	Parameters

	
	mdp (*) – 


	cap (*) – 


	targets (*) – 









	
compute(objective)

	




	
get_dot(options='')

	




	
get_min_levels(objective, recompute=False)

	Return minimal levels required to satisfy objective


	Parameters

	
	objective (one of MIN_INIT_CONS, SAFE, POS_REACH, AS_REACH, BUCHI) – 


	recompute (if True forces all computations to be done again) – 













	
get_selector(objective, recompute=False)

	Return (and compute) strategy such that it ensures it can handle
the minimal levels of energy required to satisfy given objective
from each state (if < ∞).

objective : one of MIN_INIT_CONS, SAFE, POS_REACH, AS_REACH, BUCHI
recompute : if True forces all computations to be done again






	
show(options='', max_states=None)

	








	
class fimdp.energy_solvers.GoalLeaningES(mdp, cap, targets=None, threshold=0)

	Bases: fimdp.energy_solvers.BasicES

Solver that prefers actions leading to target with higher probability.

This class extends BasicES (implementation of CAV’2020 algorithms)
by a heuristic that make the strategies more useful for control. The main
goal of this class is to create strategies that go to targets quickly.

The solver modifies only the computation of positive reachability computation.

Among action that achieves the minimal _action_value_T, choose the one with
the highest probability of hitting the picked successor. The modification is
twofold:



	redefine _action_value_T


	instead of classical argmin, use pick_best_action that works on tuples
(value, probability of hitting good successor).







See more technical description in docstring for _action_value_T.


	If threshold is set to value > 0, then we also modify how fixpoint works:

	
	Use 2-shot fixpoint computations for positive reachability; the first
run ignores successors that can be reached with probability < threshold.
The second fixpoint is run with threshold=0 to cover the cases where the
below-threshold outcomes only would lead to higher initial loads.









	Parameters

	
	mdp (*) – 


	cap (*) – 


	targets (*) – 


	threshold (*) – Successor less likely then treshold will be ignored
in the first fixpoint.









	
double_fixpoint(*args, **kwargs)

	








	
class fimdp.energy_solvers.LeastFixpointES(mdp, cap, targets)

	Bases: fimdp.energy_solvers.BasicES

Solver that uses (almost) least fixpoint to compute Safe values.

The worst case number of iterations is c_max * |S|
and thus the worst case complexity is c_max * |S|^2
steps. The worst case complexity of the largest
fixpoint version is ``|S|``^2 iterations and thus
``|S|``^3 steps.






	
fimdp.energy_solvers.argmin(items, func)

	Compute argmin of func on iterable items.

Returns (i, v) such that v=func(i) is smallest in items.






	
fimdp.energy_solvers.largest_fixpoint(solver, values, action_value, value_adj=<function <lambda>>, skip_state=<function <lambda>>, on_update=<function <lambda>>, argmin=<function argmin>)

	Largest fixpoint on list of values indexed by states.

Most of the computations of energy levels are, in the end,
using this function in one way or another.

The value of a state s is a minimum over action_value(a)
among all possible actions a of s. Values should be
properly initialized (to ∞ or some other value) before calling.


	Parameters

	
	mdp (*) – 


	values (*) – 


	action_value (*) – 
	based on current values in values. Takes

	2 paramers:






	action    : ActionData action of MDP to evaluate


	values    : list of ints current values







	functions that alter the computation (*) – 
	
	value_adjstate × v -> v’ (default labmda x, v: v)

	Change the value v for s to v’ in each
iteration (based on the candidate value).
For example use for v > capacity -> ∞
Allows to handle various types of states
in a different way.







	
	skip_statestate -> Bool (default lambda x: False)

	If True, stave will be skipped and its value
not changed.







	argmin : function that chooses which action to pick







	on_upadate (*) – Arguments are: state × value × action
The meaning is for s we found new value v using
action a.
By default only None is returned.








We have 2 options that help us debug the code using this function.
These should be turned on in the respective solver:



	debug     : print values at start of each iteration


	debug_vis : display mdp using the IPython display












	
fimdp.energy_solvers.least_fixpoint(solver, values, action_value, value_adj=<function <lambda>>, skip_state=None)

	Least fixpoint on list of values indexed by states.

The value of a state s is a minimum over action_value(a)
among all posible actions a of s. Values should be
properly initialized (to ∞ or some other value) before calling.

For safe values the values should be initialized to
minInitCons.


	Parameters

	
	solver (*) – 


	values (*) – 


	action_value (*) – 
	based on current values in values. Takes

	2 paramers:






	action    : ActionData action of MDP to evaluate


	values    : list of ints current values







	functions that alter the computation (*) – 
	
	value_adjstate × v -> v’ (default labmda x, v: v)

	Change the value v for s to v’ in each
iteration (based on the candidate value).
For example use for v > capacity -> ∞
Allows to handle various types of states
in a different way.







	
	skip_statestate -> Bool

	(default lambda x: values[x] == inf)
If True, stave will be skipped and its value
not changed.



















	We have 2 options that help us debug the code using this function:

	
	debug     : print values at start of each iteration


	debug_vis : display mdp using the IPython display













	
fimdp.energy_solvers.pick_best_action(actions, func)

	Compositional argmin and argmax.

Given func of type action → value × prob, choose action
that achieves the lowest value with the highest probability
over actions with the same value. Which is, choose action
with the lowest d=(value, 1-prob) using lexicographic
order.








fimdp.explicit module


	
fimdp.explicit.get_MECs(mdp)

	Given an MDP (not necessarly consMDP), compute its
maximal-end-components decomposition.

Returns list of mecs (lists).






	
fimdp.explicit.product_energy(cmdp, capacity, targets=[])

	Explicit encoding of energy into state-space

The state-space of the newly created MDP consists of tuples (s, e),
where s is the state of the input CMDP and e is the energy level.
For a tuple-state (s,e) and an action $a$ with consumption (in the
input CMDP) c, all successors of the action a in the new MDP are
of the form (s’, e-c) for non-reload states and
(r, capacity) for reload states.








fimdp.io module


	
fimdp.io.consmdp_to_storm_consmdp(cons_mdp, targets=None)

	Convert a ConsMDP object from FiMDP into a Storm’s SparseMDP representation.

The conversion works in reversible way. In particular, it does not encode
the energy levels into state-space. Instead, it uses the encoding using
rewards.

The reloading and target states (if given) are encoded using state-labels
in the similar fashion.


	Parameters

	
	cons_mdp – ConsMDP object to be converted


	targets – A list of targets (default None). If specified, each state








in this list is labeled with the label target.
:return: SparseMDP representation from Stormpy of the cons_mdp.






	
fimdp.io.encode_to_stormpy(cons_mdp, capacity, targets=None)

	Convert a ConsMDP object from FiMDP into a Storm’s SparseMDP representation
that is semantically equivalent.

Running analysis on this object should yield the same results as FiMDP. The
energy is encoded explicitly into the state space of the resulting MDP.

The target states (if given) are encoded using state-label “target”.


	Parameters

	
	cons_mdp – ConsMDP object to be converted


	capacity – capacity


	targets – A list of targets (default None). If specified, each state








in this list is labeled with the label target.
:return: SparseMDP representation from Stormpy of the cons_mdp.






	
fimdp.io.get_state_name(model, state)

	




	
fimdp.io.parse_cap_from_prism(filename)

	




	
fimdp.io.prism_to_consmdp(filename, constants=None, state_valuations=True, action_labels=True, return_targets=False)

	Build a ConsMDP from a PRISM symbolic description using Stormpy.

The model must specify consumption reward on each action (choice) and
it needs to contain reload label.

The following code sets the consumption of each action to 1 and marks
each state where the variable rel is equal to 1 as a reloading state.

>>> rewards "consumption"
>>>   [] true: 1;
>>> endrewards
>>> label "reload" = (rel=1);





The dict constants must be given if a parametric prism model is to be
read. It must defined all unused constants of the parametric model that
affect the model’s state space. On the other hand, it must not be defined
if the model is not parametric. The format of the dictionary is
{ “constant_name” : constant_value } where constant value is either an
integer or a string that contains a name of other constant.


	Parameters

	
	filename – Path to the PRISM model. Must be an mdp.


	constants – Dictionary for uninitialized constant initialization.


	state_valuations – If True (default), set the valuation of states as






	Type

	constants: dict[str(constant_names) -> int/str(constant_names)]





names in the resulting ConsMDP.
:param action_labels: If True (default), copies the choice labels in the
PRISM model into the ConsMDP as action labels.


	Parameters

	return_targets – If True (default False), return also the list of





states labeled by the label target.


	Returns

	ConsMDP object for the given model, or
ConsMDP, targets if return_targets










	
fimdp.io.storm_sparsemdp_to_consmdp(sparse_mdp, state_valuations=True, action_labels=True, return_targets=False)

	Convert Storm’s sparsemdp model to ConsMDP.


	Parameters

	sparse_mdp – Stormpy sparse representation of MDPs. The model must





represent an MDP and it needs to contain action-based reward called
consumption (needs to be defined for each action) and some states
need to be labeled by reload label. In particular, reload must be a
valid state label.
:type sparse_mdp: stormpy.storage.storage.SparseMdp


	Parameters

	state_valuations – if True (default), record the state valuations





(for models built from symbolic description) into state names of the
ConsMDP. It is ignored if the sparse_mdp does not contain the state
valuations.
:type state_valuations: Bool


	Parameters

	action_labels – If True (default), actions are labeled by labels





stored in sparse_mdp.choice_labeling (if it is present in the model).
Otherwise, the actions are labeled by thier id.
:type action_labels: Bool


	Parameters

	return_targets – If True (default False), parse also target states





(from labels).


	Returns

	ConsMDP object or
ConsMDP, list of targets if return_targets












fimdp.labeled module




fimdp.mincap_solvers module

Find minimal capacity needed for given starting location
and target location.


	
fimdp.mincap_solvers.bin_search(mdp, init_loc, target_locs, starting_capacity=100, objective=4, max_starting_load=None)

	Search for min. capacity by brute-force using binary search.

For given starting location (init_loc) and a set (iterable) of
goal states (target_locs) in CMDP mdp, compute minimal capacity
needed to fulfill the objective (Büchi by default) from the the
starting location. Please not that giving more targets in target_locs
means that we can choose 1 of them only and not visit the rest.

The search starts from capacity=100 by default. This can be
changed by setting starting_capacity.

If max_starting_load is given, don’t consider capacities for
which we need more than the given value from the starting
location.


	The target_locs can be either an integer ID of a state or an

	iterable of those.



	Objective can be either energy_solver.BUCHI or energy_solver.AS_REACH.

	Default is BUCHI.












fimdp.objectives module

Objectives that can be used in FiMDP.



	MIN_INIT_CONS stands for _minimal initial consumption_. It is the
minimal energy needed to surely reach some reloading state from each state.


	SAFE stands for _survival_. A SAFE strategy σ guarantees that all
plays according to σ will never deplete energy with given capacity. *





	POS_REACH stands for _positive reachability_. This subsumes survival and

	moreover, there the probability to reach the specified target set is larger
than 0.



	AS_REACH stands for _almost-sure reachability_. Similar to positive

	reachability, but here the probability is equal to 1.



	BUCHI stands for _almost-sure Büchi_. The probability that the target

	set will be visited infinitely often is equal to 1.











fimdp.utils module


	
class fimdp.utils.Duplicator(mdp: fimdp.core.ConsMDP, init_state=0, max_states=inf, preserve_names=True, solver=None)

	Bases: object

Makes an independent (deep) copy of the given consMDP.

The max_states parameter is used to limit the number of states
that will be used in the new mdp. If set and used, the resulting
ConsMDP will have the .incomplete attribute which stores the
set of states whose successors could not be fully built.

The function starts building the copy from the init_state and
builds only the part reachable from this state


	
run()

	








	
fimdp.utils.copy_consmdp(mdp, init_state=0, max_states=inf, preserve_names=True, solver=None)
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License


The MIT License

Copyright (c) 2019, 2020 UT Austin.

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the “Software”), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
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Examples


Note

All the examples can be run offline on your machine using Jupyter notebook.
In this section, we provide links to the notebooks in the repository to view
pre-executed results. You can access interactive versions of the notebooks using
Binder at this link [https://mybinder.org/v2/gh/xblahoud/FiMDP/master].
It takes a few minutes for the Binder environment to load.




Case-studies Description

In this section, we briefly describe the two important environments considered as case-studies in our work. The environments
model real-world problems and are used to demonstrate the utility and scalability of the proposed algorithm.


Electric Vehicle Routing


	Click here [https://github.com/xblahoud/FiMDP/blob/master/examples/nyc_benchmark.ipynb] to preview the notebook with tests for benchmarking this environment.


	Click here [https://github.com/xblahoud/FiMDP/blob/master/examples/nyc_visualization.ipynb] to preview the notebook that visualizes strategies on an interactive map.




Routing of autonomous electric vehicles presents a significant challenge due to their limited driving range and
low availability of recharge stations. Further, the rate of energy consumption depends on several variables that are
often stochastic. We consider an area in the middle of Manhattan, from 42nd to 116th Street, given in the figure below,
with the agent’s original state space consisting of street intersections. The agent’s actions — turns performed at these intersections — result
in deterministic transitions to subsequent states, but with stochastic consumption of energy, depending on traffic.
We model the consumption on each edge by using data on distributions of vehicle travel times and velocity and converting them to discrete energy energy consumption values.
Since the CMDP framework only allows for deterministic consumption, we introduce pseudo-states to create a CMDP from our MDP and energy consumption distributions.
The states in the proximity of real-world fast charging stations in the area are considered as reload states in the CMDP. Creating a CMDP from the street network
graph of the area shown in the figure below, we obtain a CMDP with 7378 states.


[image: AEV for NYC]
Manhattan street network considered as the operating domain for electric vehicle routing MDP. Red dots indicate the reload states, i.e.,
electric-vehicle charging stations. Green edges indicate one-way roads.






Multi-agent Grid world


	Click here [https://github.com/xblahoud/FiMDP/blob/master/examples/mars_benchmark.ipynb] to preview the notebook with tests for benchmarking this environment.




This case-study explores a multi-agent scenario of a rover and a helicopter operating on Mars. The
narrative of the case study is informed by realistic considerations of the Mars 2020 mission.
Namely, we consider a rover of infinite energy capacity and a helicopter of finite capacity that recharges
by returning to the rover. These two vehicle jointly operate on a mission where the helicopter needs to reach
areas inaccessible to the rover. We assume that the outcomes of all the actions of the helicopter are
deterministic while those of the rover — influenced by terrain dynamics — are stochastic. For the purpose
of this experiment, we specify that every transition of the helicopter costs 1 energy unit. For a grid world of size \(n\),
this system can be naturally modeled as a CMDP with \(n^4\) states (representing the x- and y-coordinates of the
rover and the helicopter). This case-study is primarily used to study the scalability limits of the proposed algorithms.


[image: _images/marsenv.gif]
Mars multi-agent grid world example with states that are unreachable for the rover.








Examples Description

In this section, we provide a short description of the tasks performed in each of the example notebook. We also
note that the notebooks themselves have detailed description of the objective and the modules utilized. There are four types of notebooks:


	Notebook for CAV artifact evaluation that reproduces the results presented in our paper accepted for presentation at CAV2020 [http://i-cav.org/2020/] (Computer-Aided Verification conference 2020).


	Notebooks that provide more in-depth experiments with two extensive case studies described above for benchmark our algorithms.


	Notebooks with various examples used in the process of developing this package; the notebooks include tiny examples that explore various objectives, comparison of different approaches to solving the safety objective, discussion on an incorrect approach, and finally, an example that demonstrates the worst-case bound for our positive-reachability algorithm. These notebooks require you to have [GraphViz] installed which is used to render the produced MDPs and the computed values.


	Notebook explaining explicit encoding of energy into state-space and show computation times for decomposition of such MDP into maximal end-components.





Artifact evaluation

The artifact_evaluation notebook includes the benchmarks in our paper titled Qualitative Controller Synthesis for Consumption Markov Decision Processes. It also contains links to instructions on how to use this package. This notebook is meant to aid in the evaluation of this artifact and should be sufficient to reproduce (modulo hardware differences) the presented results.

You can preview the non-interactive version at GitHub [https://github.com/xblahoud/FiMDP/blob/master/examples/artifact_evaluation.ipynb] or nbviewer [https://nbviewer.jupyter.org/github/xblahoud/FiMDP/blob/master/examples/artifact_evaluation.ipynb].




New York City traffic case study

There are two notebooks that present the case study of an electric vehicle routing in NYC. In short, we have an MDP that model moving of the car with varying consumption based on real traffic and consumption data.

1. The nyc_benchmark notebook experiments with the timing of computation for various objectives using our tool. As the consumption MDP in this example is modeled by a real-world scale network, the computation times obtained in this analysis gives us insights into the practicality of our tools. We analyze how the computation time varies for different parameters (capacity, targets) while calculating strategies.
You can preview the non-interactive version at GitHub [https://github.com/xblahoud/FiMDP/blob/master/examples/nyc_benchmark.ipynb] or nbviewer [https://nbviewer.jupyter.org/github/xblahoud/FiMDP/blob/master/examples/nyc_benchmark.ipynb].

2. The nyc_visualization notebook visually demonstrates strategies for given objectives on an interactive map of Manhattan.
If you want to preview the precomputed results locally, you must mark the notebook as trusted first.
You can preview the non-interactive version at GitHub [https://github.com/xblahoud/FiMDP/blob/master/examples/nyc_visualization.ipynb] (does not offer the interactive map) or nbviewer [https://nbviewer.jupyter.org/github/xblahoud/FiMDP/blob/master/examples/nyc_visualization.ipynb] (does show the interactive map).




Mars rover case study

The mars_benchmark presents a case study based on a Mars 2020 mission that features a rover and a quad moving in a grid-world. This case study was designed to reveal the scalability limits of our approach; it generates MDPs with huge state-spaces where the computations can take several minutes. The notebook generates grid-worlds of growing size and measures the computation times of our tool.

You can preview the non-interactive version at GitHub [https://github.com/xblahoud/FiMDP/blob/master/examples/mars_benchmark.ipynb] or nbviewer [https://nbviewer.jupyter.org/github/xblahoud/FiMDP/blob/master/examples/mars_benchmark.ipynb].




Reachability & Büchi

The reach_buchi notebook explains the available objectives and discusses them visually on an MDP in which we need different initial loads of energy for each objective.

You can preview the non-interactive version at GitHub [https://github.com/xblahoud/FiMDP/blob/master/examples/reach_buchi.ipynb] or nbviewer [https://nbviewer.jupyter.org/github/xblahoud/FiMDP/blob/master/examples/reach_buchi.ipynb].




2 variants to compute the safety objective

The safe_variants notebook compares the performance of two algorithms that compute the safety objective with different worst-case complexity. Both variants are based on a fixed-point computation: one on the largets fixed-point and the other on least one. The notebook compares the computation time of both variants for the safety
objective, discusses the effect on the Büchi objective using the NY city traffic MDP.

You can preview the non-interactive version at GitHub [https://github.com/xblahoud/FiMDP/blob/master/examples/safe_variants.ipynb] or  nbviewer [https://nbviewer.jupyter.org/github/xblahoud/FiMDP/blob/master/examples/safe_variants.ipynb].




Incorrect least-bound approach

The incorrect_least-bound notebook provides an example of incorrectness of least fixed-point algorithms bounded by \(|S|\) iterations for the safety objective.

You can preview the non-interactive version at GitHub [https://github.com/xblahoud/FiMDP/blob/master/examples/incorrect_least-bound.ipynb] or nbviewer [https://nbviewer.jupyter.org/github/xblahoud/FiMDP/blob/master/examples/incorrect_least-bound.ipynb].




Worst-case for positive reachability

The reachability_flower notebook presents a parametric MDP (shaped as two connected flowers) that reaches the worst-case complexity for our algorithm. It forces a quadratic number of iterations (each iteration has a linear running time) with respect to the number of states in the MDP. The notebook provides diagrams of the MDP states and the energy levels, and it also displays the computation step-by-step which uncovers where the complexity comes from.

You can preview the non-interactive version at GitHub [https://github.com/xblahoud/FiMDP/blob/master/examples/reachability_flower.ipynb] or nbviewer [https://nbviewer.jupyter.org/github/xblahoud/FiMDP/blob/master/examples/reachability_flower.ipynb].




Explicit encoding of energy into state-space

The explicit_energy notebook discusses how can we encode the energy explicitly into the state-space of classical (non-consumption) MDP. It also compares our approach to this explicit one.

You can preview the non-interactive version at GitHub [https://github.com/xblahoud/FiMDP/blob/master/examples/explicit_energy.ipynb] or nbviewer [https://nbviewer.jupyter.org/github/xblahoud/FiMDP/blob/master/examples/explicit_energy.ipynb].
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Installation and Usage

This section details the installation and usage steps for multiple modes of accessing the tool and the examples.
FiMDP requires Python 3.7 or above. The dependency on external packages is minimal and they are mainly used for
illustrations. The examples presented in interactive Jupyter notebooks help in getting started with the tool and also
to analyze the performance for provided examples.


Binder

Binder [https://mybinder.org/] creates custom computing environments from git repositories and deploys on the
cloud allowing access to interactive notebooks over any web browser. Use the following steps to get started with Binder:


	Click on the following link [https://mybinder.org/v2/gh/xblahoud/FiMDP/master/] and wait for the environment to load.


	once the cloud instance of Jupyter notebook begins, navigate to the examples directory and access any notebook of interest.


	For detailed description of all the example notebooks, please visit the examples section Examples.





Note

Large jobs might take significant computation time on Binder as the performance is usually lower than a modern local workstation.






Docker

The docker image with FiMDP is published on Docker Hub [https://hub.docker.com/repository/docker/xblahoud/fimdp].
To access the package using docker, download and install docker [https://docs.docker.com/get-docker/] on your machine.
The default behavior of this image is to run Jupyter lab, and that is also the intended usage.
To open the Jupyter lab environment in your browser, you need the following two steps.


Access the Jupyter notebooks

To open the interactive Jupyter notebooks with examples via Jupyter lab, open a CLI and run:

sudo docker run --rm=true -p 7777:8888 xblahoud/fimdp:cav2020





Note that the -p 7777:8888 redirects the port 8888 of the container to the port 7777 of your computer.
If the latter is already used on your computer, use another number. After running the above command, access the following url
in a browser in your machine:

http://localhost:7777/lab





To get started, right-click on the README.md file in the left panel and select open with > Markdown preview. If you prefer
the classic Jupyter notebook environment to Jupyter lab, type tree instead of lab.




Run bash in this container

Open a CLI and run:

sudo docker run -it xblahoud/fimdp:cav2020 /bin/bash





and the directory contains the all the source files of the package.






Conda Installation

We assume that you are familiar with the Anaconda [https://www.anaconda.com/] eco-system and the conda [https://docs.conda.io/en/latest/] environment and
have an active installation of Anaconda or Miniconda on your computer. To use our tool with the help of conda:


	Create a new conda environment with the name fimdp using the following command:

conda create -n fimdp python=3.7







	Clone our GitHub repository [https://github.com/xblahoud/FiMDP] and install the required packages in the newly created environment using the following command:

conda install --name fimdp -c conda-forge --file requirements.txt







	Activate the environment using the following command:

conda activate fimdp







	Launch Jupyter notebook server using the following command:

jupyter notebook







	Navigate local instance of Jupyter to access the examples subdirectory and access the notebooks.




Certain examples include visualizations that need the GraphViz [https://www.graphviz.org/] package installed and configured. Download and install the appropriate version
of the package and add the dot file to the system PATH to successfully run certain examples. If you install GraphViz package using Anaconda, make sure that to add the PATH
of the dot file from Anaconda library to your system PATH.




Pip Installation

We assume that you have the default Python environment already configured on your computer and you intend to use our tool inside of it.
If you want to create and work with Python virtual environments, please follow instructions on virtual environments [https://docs.python.org/3/library/venv.html].

To get the latest version of FiMDP, you can clone the GitHub repository [https://github.com/xblahoud/FiMDP] and install the dependencies with pip3:

git clone https://github.com/xblahoud/FiMDP
cd FiMDP
pip3 install -e .





Further, certain examples include visualizations that need the GraphViz [https://www.graphviz.org/] package installed and configured. Download and install the appropriate version
of the package and add the dot file to the system PATH to successfully run certain examples.

After the installation, you can start a local instance of Jupyter notebook and access the examples.







          

      

      

    

  
_static/comment-bright.png





_static/comment-close.png





_static/ajax-loader.gif





_static/down.png





_st