
FiMDP Documentation
Release 1.0

Frantisek Blahoudek and Pranay Thangeda

Feb 15, 2023

Contents

1 Introduction 3

2 Authors 5

3 Installation 7

4 Citation Info 9

5 Support 11

6 License 13

7 Detailed Contents 15
7.1 Documentation . 15
7.2 License . 28

8 Indices and Search 29

Python Module Index 31

Index 33

i

ii

FiMDP Documentation, Release 1.0

Contents 1

https://travis-ci.org/FiMDP/FiMDP

FiMDP Documentation, Release 1.0

2 Contents

CHAPTER 1

Introduction

FiMDP is a Python package for analysis and controller synthesis of Markov decision processes with resource con-
straints, modeled as Consumption Markov Decision Processes (ConsMDPs). The model of ConsMDPs and associated
algorithms were first introduced in our work titled Qualitative Controller Synthesis for Consumption Markov Decision
Processes presented at CAV2020 Citation Info.

This package includes interactive Jupyter notebooks with examples from FiMDPEnv, our related project that provides
realistic simulation environments that model real-world ConsMDPs. The package also includes tutorials designed to
help you get started with our tool.

3

https://github.com/FiMDP/FiMDP
https://github.com/FiMDP/FiMDPEnv

FiMDP Documentation, Release 1.0

4 Chapter 1. Introduction

CHAPTER 2

Authors

This package is developed and maintained by František Blahoudek, and Pranay Thangeda. Contact information is
provided in the section Support.

Note: This overview assumes no background in the topic and tries to explains the problem in layman terms. For a
detailed explanation of our work, please go through our paper Citation Info.

Several real-world systems of interest are resource constrained, i.e., they utilize certain resource from a limited supply
that must be replenished regularly. For example, autonomous electric systems such as driverless cars, autonomous
drones, planetary rovers, etc, are constrained by design to operate on power drawn from a battery of limited capacity
and resource exhaustion could potentially lead to several undesirable consequences including safety hazards. Further,
such systems usually operate in uncertain environments with stochastic dynamics that can be effectively modeled as
Markov decision process (MDPs).

Traditionally, resource-constrained systems were studied using so called energy based models that are known not to
admit polynomial-time controller synthesis algorithms. We instead build up-on so called consumption models that
typically admit more efficient analysis and extend it to probabilistic setting. A consumption MDP (ConsMDP) is then
characterized by an MDP that models the stochastic environment, the capacity of the agent, and the initial resource
level. Given a ConsMDP with no zero-consumption cycles, and a set of target states, we show that we can prove in
polynomial time the existence of a strategy that prevents resource exhaustion and visits some target states infinitely
often. If such a strategy exists, we provide its polynomial-size representation in polynomial-time.

The interactive map above visualizes an example ConsMDP and the strategy obtained from our algorithm. Zoom in
to see the action choices at different states (intersections) for different energy levels. The green nodes indicate reload
states, the blue nodes indicate target states, and the red nodes are states where no safe action is prescribed by the
strategy at the current energy level.

5

https://www.linkedin.com/in/fanda-blahoudek-392a6752
https://www.pranaythangeda.com/

FiMDP Documentation, Release 1.0

6 Chapter 2. Authors

CHAPTER 3

Installation

FiMDP is written in Python 3 and the examples are presented using interactive Jupyter notebooks. FiMDP can be
installed using pip from PyPI:

pip install -U fimdp

While the baseline package has minimal dependencies, FiMDP depends on several other tools for extended function-
ality. Some of the recommended dependencies are:

• Graphviz: for visualizations in Jupyter notebooks,

• Storm and Stormpy: for reading PRSIM, JANI, and Storm models,

• Spot: for support of labeled ConsMDPs and specifications given as deterministic Büchi automata or the recur-
rence fragment of Linear-time Temporal Logic (LTL).

7

https://graphviz.org/
https://www.stormchecker.org/index.html
https://moves-rwth.github.io/stormpy/
https://spot.lrde.epita.fr/

FiMDP Documentation, Release 1.0

8 Chapter 3. Installation

CHAPTER 4

Citation Info

This tool is based on original paper that introduces the notion of ConsMDPs and also presents associated algorithms
and guarantees. To cite our work on ConsMDPs please use the following publication:

Blahoudek F., Brázdil T., Novotný P., Ornik M., Thangeda P., Topcu U. (2020) Qualitative Controller Synthe-
sis for Consumption Markov Decision Processes, in proceedings of 32nd International Conference on Computer-
Aided Verification (CAV 2020), Lecture Notes in Computer Science, vol 12225. Springer. https://doi.org/10.1007/
978-3-030-53291-8_22

9

http://i-cav.org/2020/
https://doi.org/10.1007/978-3-030-53291-8_22
https://doi.org/10.1007/978-3-030-53291-8_22

FiMDP Documentation, Release 1.0

10 Chapter 4. Citation Info

CHAPTER 5

Support

Detailed documentation of the modules has been provided in the Documentation section. If you have any trouble with
the installation, or have any questions, raise an issue in GitHub or email František Blahoudek or Pranay Thangeda.

11

https://github.com/FiMDP/FiMDP
mailto:fandikb@gmail.com
mailto:contact@prny.me

FiMDP Documentation, Release 1.0

12 Chapter 5. Support

CHAPTER 6

License

This package is released under the highly permissive MIT license which also makes it clear that the authors and the
organizations they are a part of cannot be held liable to any damage caused by usage of this package or any topic
discussed in it. For a detailed statement, go through the license file - License.

13

FiMDP Documentation, Release 1.0

14 Chapter 6. License

CHAPTER 7

Detailed Contents

7.1 Documentation

This section provides the documentation of all the modules in the package.

7.1.1 fimdp.core module

Core module defining basic data structures and classes of the FiMDP package.

It defines the class for representation of Consumption Decision Processes, the interface for strategies (including ex-
ceptions), and Counter-strategies (and the needed building blocks). Further, it provides support for ConsMDPs that
represent a product with some input ConsMDP and some other component (explicit energy, automaton, . . .).

Consumption Markov Decision Processes (CMDPs)

See our [CAV paper] for the theoretical backgrounds.

The classes needed for representation of (CMDPs) are:

• ConsMDP: represent an CMDP object

• ActionData: represent actions of CMDPs

The ProductConsMDP are ConsMDPs with states fromed by 2 components.

Interface for strategies

A strategy should offer strategy.next_action() that picks an action based on history, and the function strat-
egy.update_state(outcome) which tells the strategy that the last action was resolved to the state outcome — which
becomes the new current state. Each call to next_action() should be followed by a call to update_state and vice versa.
Both functions raise WrongCallOrderError if the calls do not alternate.

To simplify code, strategy.next_action(outcome) is a shorthand for

>>> strategy.update_state(outcome)
>>> strategy.next_action()

15

FiMDP Documentation, Release 1.0

The function update_state(outcome) raises a ValueError if outcome is not a valid successor for the last action returned
by next_action(). Based on the outcome, the strategy can update its memory.

The strategy can be used in a new play using strategy.reset() which allows new initialization of initial state and memory.

The class Strategy implements the basic interface for strategies, but it neither updates any memory nor picks actions.
Its subclasses should override the function ._next_action() and (when using memory) also ._update(outcome).

Counter-strategies

The main ingredient of a counter strategy is a counter selector. A counter selector is a mapping from states to selection
rules. A selection rule selects actions based on given energy level. See, again, out [CAV paper] for details.

The classes CounterStrategy, CounterSelector, and SelectionRule implement the respective objects as described in the
paper.

ProductSelector and ProductSelectorWrapper are two selectors that can be used to hide the product construction from
the user and maps actions and states of a ProductConsMDP into states and actions of the original ConsMDP.

[CAV paper]: https://link.springer.com/chapter/10.1007/978-3-030-53291-8_22

class fimdp.core.ActionData(src, cons, distr, label, next_succ)
Bases: object

Holds data of an action in ConsMDP.

The defining attributes of an action are:

• source state src

• consumption cons,

• the successors probability distribution distr,

• the action label

The attribute next_succ is used to keep a nested linked-list of actions with the same src.

get_succs()

class fimdp.core.ConsMDP(layout=None)
Bases: object

Represent Markov Decision Process with consumption on actions.

States are represented by integers and actions are represented by ActionData objects. To add an action, use
add_action. To iterate over actions of a state s use actions_for_state(s). If you wish to remove actions dur-
ing the iteration, use out_iteraser(s) instead. There is also remove_action which requires an action id. See
implementation details for further info.

States can have names using the list names. Reload states are stored in the set reload_states.

Important: Functions that change the structure of the consMDP should always call self.structure_change().

The action objects are stored in a sparse-matrix fashion using two vectors: succ and actions. The latter is just a
list of ActionData objects stored in the order in which the actions were created. Using the ActionData.next_succ
the actions form a linked-list of actions for each state (that is how actions_for_state(s) work internally). The
vector succ serves to locate the first action in this linked-list for given state (actions[succ[s]] hold the first action
of s).

Do not modify the two vectors directly. Always use ConsMDP.add_action to add and ConsMDP.remove_action
or ConsMDP.out_iteraser(s) to remove actions.

16 Chapter 7. Detailed Contents

https://link.springer.com/chapter/10.1007/978-3-030-53291-8_22

FiMDP Documentation, Release 1.0

Parameters layout (str or None (default)) – one of the Graphviz engines to compute
graph layouts (“dot”, “neato”, “twopi”, “circo”). The engine “dot” is used if layout is not speci-
fied. The layout can be later changed using the attribute ConsMDP.dot_layout.

actions_for_state(s)
Return iterator of actions available for state s.

add_action(src, distribution, label, consumption=0)
Add action to consMDP.

Returns: index of the new action in the actions list. :raises: * * ValueError if attempt to use non-existent
state

• * ValueError if src-label->. . . exists already.

get_dot(options=”)

is_reload(sid)
Return the reload status of state sid.

new_state(reload=False, name=None)
Add a new state into the CMDP.

Returns: the id of the created state Raise ValueError if a state with the same name already exists.

new_states(count, names=None)
Create multiple (count) states.

The list names must have length count if supplied. These will be the names for the states.

Return the list of states ids. Raise ValueError if a state with the same name already exists.

out_iteraser(s)
Return iterator of actions available for state s that allows action removal.

remove_action(aid)
Remove action based on its id.

set_reload(s, reload=True)
Set reload status of given state(s).

If s is a list, set all of them as reloading states. By setting reload=False, the states will be removed from
reloading staes.

show(options=”, targets=None, max_states=None)

state_succs(s)
Return successors of s over all actions

state_with_name(name)
Return id of state with name name or None if not exists.

structure_change()

class fimdp.core.CounterSelector(mdp, values=None)
Bases: list

CounterSelector selects actions based on given state and energy level.

Counter selector is a list of SelectionRules extended by:

• pointer to the corresponding mdp, and

• 2 functions for updating and accessing actions to be taken:

– update(state, energy_level, action)

7.1. Documentation 17

FiMDP Documentation, Release 1.0

– select_action(state, energy)

copy_values_from(other, state_subset=None)
Replace values for given state_subset by values from other counter selector.

If state_subset is not given (or is None), replace values for all states.

select_action(state, energy)
Return action selected for state and energy

update(state, energy_level, action)
Update the action for given state and energy_level to action.

energy_level is a lower bound of an interval for which action will be selected by select_action.

Raises ValueError if product_action is not an action of product_state

class fimdp.core.CounterStrategy(mdp, selector, capacity, init_energy, init_state=None, *args,
**kwargs)

Bases: fimdp.core.Strategy

Counter strategy tracks energy consumption in memory and chooses next action based on the current state and
the current energy level.

This class implements the memory and its updates. The selection itself is delegated to selector. The attributes
capacity and init_energy are needed to track the energy level correctly.

The implementation is suited to use CounterSelector as selector, but can take anything that implements se-
lect_action(state, energy).

exception fimdp.core.NoFeasibleActionError
Bases: Exception

class fimdp.core.PickFirstStrategy(mdp, init_state=None, *args, **kwargs)
Bases: fimdp.core.Strategy

Class for testing and presentation purposes.

Always picks the first available action of the CMDP. Does not track energy and does not give any guarantees.

class fimdp.core.ProductConsMDP(orig_mdp, other=None)
Bases: fimdp.core.ConsMDP

CMDP with states that have two components.

We call the two components orig_mdp and other, where orig_mdp is some ConsMDP object and other can be
arbitrary domain, for example deterministic Büchi automaton, or upper bound of some integer interval. The
orig_mdp and other store pointers to the objects of origin for

the product mdp (if supplied).

The function orig_action maps actions in this object into actions of the source ConsMDP object. Similarly,
other_action works for the other object (if makes sense).

add_action(src, distribution, label, consumption, orig_action, other_action=None)
Create a new action in the product using (src, distribution, label, consumption) and update mappings to
orig_action and other_action.

Parameters

• src – src in product

• distribution – distribution in product

• label – label of the action

• consumption – consumption in product

18 Chapter 7. Detailed Contents

FiMDP Documentation, Release 1.0

• orig_action – ActionData object from the original mdp

• other_action – Value to be returned by other_action for the new

action. :return: action id in the product

get_or_create_state(orig_s, other_s)
Return state of product based on the two components (orig_s, other_s) and create one if it does not exist.

Parameters

• orig_s – state_id on the original mdp

• other_s – state of the other component

Returns id of state (orig_s, other_s)

get_state(orig_s, other_s)
Return state of product based on the two components (orig_s, other_s) if exists and None otherwise.

Parameters

• orig_s – state_id on the original mdp

• other_s – state of the other component

Returns id of state (orig_s, other_s) or None

new_state(orig_s, other_s, reload=False, name=None)
Create a new product state (orig_s, other_s).

Parameters

• orig_s – state_id in the original mdp

• other_s – state of the other component

• reload – is state reloading? (Bool)

• name – a custom name of the state, orig_s,other_s by default.

Returns id of the new state

orig_action(action)
Decompose the action from the product to the action in the original mdp.

Parameters action – ActionData from product (as used in for loops)

Returns ActionData from the original mdp

other_action(action)
Decompose the action from the product onto the second component, if defined.

Parameters action – ActionData from product (as used in for loops)

Returns value supplied on creation of action (if any), or None

class fimdp.core.ProductSelector(product_mdp: fimdp.core.ProductConsMDP)
Bases: dict

Selector suited for ConsMDPs whose analysis requires a product ConsMDP.

It combines the approach of CounterSelector with decomposition of the product states and actions into the
original components and works for selection even after destruction of the product MDP. The intended use is as
follows.

For a MDP called orig and some other object, we build product MDP. The analysis of product calls Prod-
uctSelector.update() with states and actions belonging to the product MDP. For selection of the next action,

7.1. Documentation 19

FiMDP Documentation, Release 1.0

ProductSelector.select_action should be called with orig_state and other_state that belong to orig and other and
no translation from/to product states is needed. Indeed, the translation happens directly on update.

In short, based on information what action should be picked in a product (supplied using update), ProductSe-
lector selects actions of the original mdp (at the time ‘select_action is called).

It is implemented as 2-dimensional dict (other × orig) to SelectionRules. The reason for dicts instead of lists is
that the product can be sparse.

copy_values_from(other, product_state_subset=None)
Replace values by values from other ProductSelector.

If product_state_subset is not given (or is None), replace values for all states. Otherwise, replaces only
those values that correspond to the given states from the product.

select_action(orig_state, other_state, energy)
Return action selected for orig_state×other_state and energy.

update(product_state, energy_level, product_action)
For given state of product with components (orig, other) update the selection rule for selector[other][orig]
with rule[energy]=action where action belongs to orig and corresponds to product_action.

energy_level‘ is a lower bound of an interval for which action will be selected by select_action.

Raises ValueError if product_action is not an action of product_state

class fimdp.core.ProductSelectorWrapper(mdp: fimdp.core.ProductConsMDP, prod-
uct_selector=None)

Bases: fimdp.core.CounterSelector

Selector suited for ConsMDPs whose analysis requires a product ConsMDP.

The ProductSelectorWrapper is a wrapper around CounterSelector built for the product and the ProductSelec-
torWrapper translates the states of the product into their two components (state, other_state) and back. The
same applies to actions.

The main purpose of the selector is to provide interface that is accessible without the knowledge of the product.
Therefore, it selects actions based on:

• state of the original mdp (before product),

• state of the other component, and

• energy level.

The actions returned by select_action are actions of the original mdp.

select_action(state, other_state, energy)
Return action selected for state and energy

class fimdp.core.SelectionRule
Bases: dict

Selection rule is a partial function: → Actions.

Intuitively, a selection according to rule 𝜑 selects the action that corresponds to the largest value from dom(𝜑)
that is not larger than the given energy level.

For dom(𝜑) = n1 < n2 < . . . < n_k and energy level e the selection returns 𝜑(n_i) where i is largest integer such
that n_i <= e.

copy()→ a shallow copy of D

select_action(energy)
Select action for given energy level.

20 Chapter 7. Detailed Contents

FiMDP Documentation, Release 1.0

Parameters energy – energy level

Returns action selected by the rule for energy

Raise NoFeasibleActionError if no action can be selected for the given energy

class fimdp.core.Simulator(strategy, num_steps=0)
Bases: object

Class for simulating a strategy object on a ConsMDP.

Picks actions based on given strategy for num_steps of simulation steps and stores the state and action history
for further analysis. Interface allows for extending simulation and resetting given instance using simulate and
reset methods.

reset(init_state=None, *args, **kwargs)
Prepare a new simulation with the same strategy.

The arguments are passed to strategy.reset functions. We can thus change the initial state or the initial
energy in the case of Counter strategies.

If no init_state is given, the previous initial state is reused

simulate(num_steps)
Continue the simulation for additional num_steps steps.

class fimdp.core.Strategy(mdp, init_state=None, *args, **kwargs)
Bases: object

Abstract class that implements the interface for strategies (see the docstring for the strategy.py module). It
handles the checks for outcomes and alternation of calls to .next_action and .update_state.

Calls to .next_action() and .update_state(outcome) should alternate unless next_action(outcome) are used ex-
clusively.

next_action(outcome=None)
Pick the next action to play

Parameters outcome – sid (state id) or None (default None) outcome must be a successor of
the action picked by the last call to .next_action(). If defined, update the current state to
outcome.

Returns action to play

reset(init_state=None, *args, **kwargs)
Reset the memory and initial state for a new play.

update_state(outcome)
Tells the strategy that the last action picked by next_action was resolved to outcome.

Parameters outcome – sid (state id) outcome must be a successor of the action picked by the
last call to .next_action().

exception fimdp.core.WrongCallOrderError
Bases: Exception

7.1.2 fimdp.distribution module

Module that defines probability distributions and distributions-related functions.

A distribution is a mapping from states (integers) to probability values where the values sum up to 1.

fimdp.distribution.is_distribution(distribution)
Checks if the given mapping is a probability distribution (sums up to 1).

7.1. Documentation 21

FiMDP Documentation, Release 1.0

Parameters distribution (a mapping from integers to probabilities) –

Returns

Return type True if values in distribution sum up to 1.

fimdp.distribution.uniform(destinations)
Create a uniform distribution for given destinations.

destinations: iterable of states

7.1.3 fimdp.dot module

Core module defining the functions for converting a consumption Markov Decision Process from consMDP model to
dot representation and present it.

class fimdp.dot.consMDP2dot(mdp, solver=None, options=”)
Bases: object

Convert consMDP to dot

add_incomplete(s)
Adds a dashed line from s to a dummy . . . node for the given state s.

add_legend()

finish()

get_dot()

get_state_name(s)

process_action(a)

process_state(s)

start()

fimdp.dot.dot_to_svg(dot_str, mdp=None)
Send some text to dot for conversion to SVG.

7.1.4 fimdp.energy_solvers module

Module with energy-aware qualitative solvers for Consumption MDPs

Currently, the supported objectives are:

• minInitCons: reaching a reload state within >0 steps

• safe : survive from s forever

• positiveReachability(T) [survive and the probability of reaching] some target from T is positive (>0)

• almostSureReachability(T): survive and the probability of reaching some target from T is 1

• Büchi(T) : survive and keep visiting T forever (with prob. 1).

The results of a solver for an objective o are twofolds:

1. For each state s we provide value o[s] which is the minimal initial load of energy needed to satisfy the
objective o from s.

2. Corresponding strategy that, given at least o[s] in s guarantees that o is satisfied.

22 Chapter 7. Detailed Contents

FiMDP Documentation, Release 1.0

The computed values o[s] from 1. can be visualized in the mdp object by setting mdp.EL=solver and then calling
mdp.show().

class fimdp.energy_solvers.BasicES(mdp, cap, targets)
Bases: object

Solve qualitative objectives for Consumption MDPs.

This implements the algorithms as described in the paper Qualitative Controller Synthesis for Consumption
Markov Decision Processes

Parameters

• mdp (*) –

• cap (*) –

• targets (*) –

compute(objective)

get_dot(options=”)

get_min_levels(objective, recompute=False)
Return minimal levels required to satisfy objective

Parameters

• objective (one of MIN_INIT_CONS, SAFE, POS_REACH, AS_REACH,
BUCHI) –

• recompute (if True forces all computations to be done again) –

get_selector(objective, recompute=False)
Return (and compute) strategy such that it ensures it can handle the minimal levels of energy required to
satisfy given objective from each state (if < ∞).

objective : one of MIN_INIT_CONS, SAFE, POS_REACH, AS_REACH, BUCHI recompute : if True
forces all computations to be done again

show(options=”, max_states=None)

class fimdp.energy_solvers.GoalLeaningES(mdp, cap, targets=None, threshold=0)
Bases: fimdp.energy_solvers.BasicES

Solver that prefers actions leading to target with higher probability.

This class extends BasicES (implementation of CAV’2020 algorithms) by a heuristic that make the strategies
more useful for control. The main goal of this class is to create strategies that go to targets quickly.

The solver modifies only the computation of positive reachability computation.

Among action that achieves the minimal _action_value_T, choose the one with the highest probability of hitting
the picked successor. The modification is twofold:

1. redefine _action_value_T

2. instead of classical argmin, use pick_best_action that works on tuples (value, probability of hitting good
successor).

See more technical description in docstring for _action_value_T.

If threshold is set to value > 0, then we also modify how fixpoint works:

3. Use 2-shot fixpoint computations for positive reachability; the first run ignores successors that can be
reached with probability < threshold. The second fixpoint is run with threshold=0 to cover the cases
where the below-threshold outcomes only would lead to higher initial loads.

7.1. Documentation 23

FiMDP Documentation, Release 1.0

Parameters

• mdp (*) –

• cap (*) –

• targets (*) –

• threshold (*) – Successor less likely then treshold will be ignored in the first fixpoint.

double_fixpoint(*args, **kwargs)

class fimdp.energy_solvers.LeastFixpointES(mdp, cap, targets)
Bases: fimdp.energy_solvers.BasicES

Solver that uses (almost) least fixpoint to compute Safe values.

The worst case number of iterations is c_max * |S| and thus the worst case complexity is c_max * |S|^2
steps. The worst case complexity of the largest fixpoint version is ‘‘|S|‘‘^2 iterations and thus ‘‘|S|‘‘^3 steps.

fimdp.energy_solvers.argmin(items, func)
Compute argmin of func on iterable items.

Returns (i, v) such that v=func(i) is smallest in items.

fimdp.energy_solvers.largest_fixpoint(solver, values, action_value, value_adj=<function
<lambda>>, skip_state=<function <lambda>>,
on_update=<function <lambda>>,
argmin=<function argmin>)

Largest fixpoint on list of values indexed by states.

Most of the computations of energy levels are, in the end, using this function in one way or another.

The value of a state s is a minimum over action_value(a) among all possible actions a of s. Values should be
properly initialized (to ∞ or some other value) before calling.

Parameters

• mdp (*) –

• values (*) –

• action_value (*) –

based on current values in values. Takes 2 paramers:

– action : ActionData action of MDP to evaluate

– values : list of ints current values

• functions that alter the computation (*) –

– value_adj [state × v -> v’ (default labmda x, v: v)] Change the value v for s to v’ in
each iteration (based on the candidate value). For example use for v > capacity -> ∞
Allows to handle various types of states in a different way.

– skip_state [state -> Bool (default lambda x: False)] If True, stave will be skipped and
its value not changed.

– argmin : function that chooses which action to pick

• on_upadate (*) – Arguments are: state × value × action The meaning is for s we found
new value v using action a. By default only None is returned.

We have 2 options that help us debug the code using this function. These should be turned on in the respective
solver:

24 Chapter 7. Detailed Contents

FiMDP Documentation, Release 1.0

• debug : print values at start of each iteration

• debug_vis : display mdp using the IPython display

fimdp.energy_solvers.least_fixpoint(solver, values, action_value, value_adj=<function
<lambda>>, skip_state=None)

Least fixpoint on list of values indexed by states.

The value of a state s is a minimum over action_value(a) among all posible actions a of s. Values should be
properly initialized (to ∞ or some other value) before calling.

For safe values the values should be initialized to minInitCons.

Parameters

• solver (*) –

• values (*) –

• action_value (*) –

based on current values in values. Takes 2 paramers:

– action : ActionData action of MDP to evaluate

– values : list of ints current values

• functions that alter the computation (*) –

– value_adj [state × v -> v’ (default labmda x, v: v)] Change the value v for s to v’ in
each iteration (based on the candidate value). For example use for v > capacity -> ∞
Allows to handle various types of states in a different way.

– skip_state [state -> Bool] (default lambda x: values[x] == inf) If True, stave will be
skipped and its value not changed.

We have 2 options that help us debug the code using this function:

• debug : print values at start of each iteration

• debug_vis : display mdp using the IPython display

fimdp.energy_solvers.pick_best_action(actions, func)
Compositional argmin and argmax.

Given func of type action → value × prob, choose action that achieves the lowest value with the highest prob-
ability over actions with the same value. Which is, choose action with the lowest d=(value, 1-prob) using
lexicographic order.

7.1.5 fimdp.explicit module

fimdp.explicit.get_MECs(mdp)
Given an MDP (not necessarly consMDP), compute its maximal-end-components decomposition.

Returns list of mecs (lists).

fimdp.explicit.product_energy(cmdp, capacity, targets=[])
Explicit encoding of energy into state-space

The state-space of the newly created MDP consists of tuples (s, e), where s is the state of the input CMDP and
e is the energy level. For a tuple-state (s,e) and an action a with consumption (in the input CMDP) c, all

7.1. Documentation 25

FiMDP Documentation, Release 1.0

successors of the action a in the new MDP are of the form (s’, e-c) for non-reload states and (r, capacity) for
reload states.

7.1.6 fimdp.io module

fimdp.io.consmdp_to_storm_consmdp(cons_mdp, targets=None)
Convert a ConsMDP object from FiMDP into a Storm’s SparseMDP representation.

The conversion works in reversible way. In particular, it does not encode the energy levels into state-space.
Instead, it uses the encoding using rewards.

The reloading and target states (if given) are encoded using state-labels in the similar fashion.

Parameters

• cons_mdp – ConsMDP object to be converted

• targets – A list of targets (default None). If specified, each state

in this list is labeled with the label target. :return: SparseMDP representation from Stormpy of the cons_mdp.

fimdp.io.encode_to_stormpy(cons_mdp, capacity, targets=None)
Convert a ConsMDP object from FiMDP into a Storm’s SparseMDP representation that is semantically equiva-
lent.

Running analysis on this object should yield the same results as FiMDP. The energy is encoded explicitly into
the state space of the resulting MDP.

The target states (if given) are encoded using state-label “target”.

Parameters

• cons_mdp – ConsMDP object to be converted

• capacity – capacity

• targets – A list of targets (default None). If specified, each state

in this list is labeled with the label target. :return: SparseMDP representation from Stormpy of the cons_mdp.

fimdp.io.get_state_name(model, state)

fimdp.io.parse_cap_from_prism(filename)

fimdp.io.prism_to_consmdp(filename, constants=None, state_valuations=True, action_labels=True,
return_targets=False)

Build a ConsMDP from a PRISM symbolic description using Stormpy.

The model must specify consumption reward on each action (choice) and it needs to contain reload label.

The following code sets the consumption of each action to 1 and marks each state where the variable rel is equal
to 1 as a reloading state.

>>> rewards "consumption"
>>> [] true: 1;
>>> endrewards
>>> label "reload" = (rel=1);

The dict constants must be given if a parametric prism model is to be read. It must defined all unused constants
of the parametric model that affect the model’s state space. On the other hand, it must not be defined if the
model is not parametric. The format of the dictionary is { “constant_name” : constant_value } where constant
value is either an integer or a string that contains a name of other constant.

Parameters

26 Chapter 7. Detailed Contents

FiMDP Documentation, Release 1.0

• filename – Path to the PRISM model. Must be an mdp.

• constants – Dictionary for uninitialized constant initialization.

• state_valuations – If True (default), set the valuation of states as

Type constants: dict[str(constant_names) -> int/str(constant_names)]

names in the resulting ConsMDP. :param action_labels: If True (default), copies the choice labels in the PRISM
model into the ConsMDP as action labels.

Parameters return_targets – If True (default False), return also the list of

states labeled by the label target.

Returns ConsMDP object for the given model, or ConsMDP, targets if return_targets

fimdp.io.storm_sparsemdp_to_consmdp(sparse_mdp, state_valuations=True, ac-
tion_labels=True, return_targets=False)

Convert Storm’s sparsemdp model to ConsMDP.

Parameters sparse_mdp – Stormpy sparse representation of MDPs. The model must

represent an MDP and it needs to contain action-based reward called consumption (needs to be defined for each
action) and some states need to be labeled by reload label. In particular, reload must be a valid state label. :type
sparse_mdp: stormpy.storage.storage.SparseMdp

Parameters state_valuations – if True (default), record the state valuations

(for models built from symbolic description) into state names of the ConsMDP. It is ignored if the sparse_mdp
does not contain the state valuations. :type state_valuations: Bool

Parameters action_labels – If True (default), actions are labeled by labels

stored in sparse_mdp.choice_labeling (if it is present in the model). Otherwise, the actions are labeled by thier
id. :type action_labels: Bool

Parameters return_targets – If True (default False), parse also target states

(from labels).

Returns ConsMDP object or ConsMDP, list of targets if return_targets

7.1.7 fimdp.labeled module

7.1.8 fimdp.mincap_solvers module

Find minimal capacity needed for given starting location and target location.

fimdp.mincap_solvers.bin_search(mdp, init_loc, target_locs, starting_capacity=100, objective=4,
max_starting_load=None)

Search for min. capacity by brute-force using binary search.

For given starting location (init_loc) and a set (iterable) of goal states (target_locs) in CMDP mdp, compute
minimal capacity needed to fulfill the objective (Büchi by default) from the the starting location. Please not that
giving more targets in target_locs means that we can choose 1 of them only and not visit the rest.

The search starts from capacity=100 by default. This can be changed by setting starting_capacity.

If max_starting_load is given, don’t consider capacities for which we need more than the given value from the
starting location.

The target_locs can be either an integer ID of a state or an iterable of those.

Objective can be either energy_solver.BUCHI or energy_solver.AS_REACH. Default is BUCHI.

7.1. Documentation 27

FiMDP Documentation, Release 1.0

7.1.9 fimdp.objectives module

Objectives that can be used in FiMDP.

• MIN_INIT_CONS stands for _minimal initial consumption_. It is the minimal energy needed to
surely reach some reloading state from each state.

• SAFE stands for _survival_. A SAFE strategy 𝜎 guarantees that all plays according to 𝜎 will never
deplete energy with given capacity. *

POS_REACH stands for _positive reachability_. This subsumes survival and moreover, there the
probability to reach the specified target set is larger than 0.

AS_REACH stands for _almost-sure reachability_. Similar to positive reachability, but here the
probability is equal to 1.

BUCHI stands for _almost-sure Büchi_. The probability that the target set will be visited infinitely
often is equal to 1.

7.1.10 fimdp.utils module

class fimdp.utils.Duplicator(mdp: fimdp.core.ConsMDP, init_state=0, max_states=inf, pre-
serve_names=True, solver=None)

Bases: object

Makes an independent (deep) copy of the given consMDP.

The max_states parameter is used to limit the number of states that will be used in the new mdp. If set and used,
the resulting ConsMDP will have the .incomplete attribute which stores the set of states whose successors could
not be fully built.

The function starts building the copy from the init_state and builds only the part reachable from this state

run()

fimdp.utils.copy_consmdp(mdp, init_state=0, max_states=inf, preserve_names=True, solver=None)

7.2 License

7.2.1 The MIT License

Copyright (c) 2019, 2020 UT Austin.

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documen-
tation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PAR-
TICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFT-
WARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

28 Chapter 7. Detailed Contents

CHAPTER 8

Indices and Search

• genindex

• search

29

FiMDP Documentation, Release 1.0

30 Chapter 8. Indices and Search

Python Module Index

f
fimdp.core, 15
fimdp.distribution, 21
fimdp.dot, 22
fimdp.energy_solvers, 22
fimdp.explicit, 25
fimdp.io, 26
fimdp.mincap_solvers, 27
fimdp.objectives, 28
fimdp.utils, 28

31

FiMDP Documentation, Release 1.0

32 Python Module Index

Index

A
ActionData (class in fimdp.core), 16
actions_for_state() (fimdp.core.ConsMDP

method), 17
add_action() (fimdp.core.ConsMDP method), 17
add_action() (fimdp.core.ProductConsMDP

method), 18
add_incomplete() (fimdp.dot.consMDP2dot

method), 22
add_legend() (fimdp.dot.consMDP2dot method), 22
argmin() (in module fimdp.energy_solvers), 24

B
BasicES (class in fimdp.energy_solvers), 23
bin_search() (in module fimdp.mincap_solvers), 27

C
compute() (fimdp.energy_solvers.BasicES method), 23
ConsMDP (class in fimdp.core), 16
consMDP2dot (class in fimdp.dot), 22
consmdp_to_storm_consmdp() (in module

fimdp.io), 26
copy() (fimdp.core.SelectionRule method), 20
copy_consmdp() (in module fimdp.utils), 28
copy_values_from() (fimdp.core.CounterSelector

method), 18
copy_values_from() (fimdp.core.ProductSelector

method), 20
CounterSelector (class in fimdp.core), 17
CounterStrategy (class in fimdp.core), 18

D
dot_to_svg() (in module fimdp.dot), 22
double_fixpoint()

(fimdp.energy_solvers.GoalLeaningES
method), 24

Duplicator (class in fimdp.utils), 28

E
encode_to_stormpy() (in module fimdp.io), 26

F
fimdp.core (module), 15
fimdp.distribution (module), 21
fimdp.dot (module), 22
fimdp.energy_solvers (module), 22
fimdp.explicit (module), 25
fimdp.io (module), 26
fimdp.mincap_solvers (module), 27
fimdp.objectives (module), 28
fimdp.utils (module), 28
finish() (fimdp.dot.consMDP2dot method), 22

G
get_dot() (fimdp.core.ConsMDP method), 17
get_dot() (fimdp.dot.consMDP2dot method), 22
get_dot() (fimdp.energy_solvers.BasicES method), 23
get_MECs() (in module fimdp.explicit), 25
get_min_levels() (fimdp.energy_solvers.BasicES

method), 23
get_or_create_state()

(fimdp.core.ProductConsMDP method),
19

get_selector() (fimdp.energy_solvers.BasicES
method), 23

get_state() (fimdp.core.ProductConsMDP method),
19

get_state_name() (fimdp.dot.consMDP2dot
method), 22

get_state_name() (in module fimdp.io), 26
get_succs() (fimdp.core.ActionData method), 16
GoalLeaningES (class in fimdp.energy_solvers), 23

I
is_distribution() (in module fimdp.distribution),

21
is_reload() (fimdp.core.ConsMDP method), 17

L
largest_fixpoint() (in module

fimdp.energy_solvers), 24

33

FiMDP Documentation, Release 1.0

least_fixpoint() (in module
fimdp.energy_solvers), 25

LeastFixpointES (class in fimdp.energy_solvers), 24

N
new_state() (fimdp.core.ConsMDP method), 17
new_state() (fimdp.core.ProductConsMDP method),

19
new_states() (fimdp.core.ConsMDP method), 17
next_action() (fimdp.core.Strategy method), 21
NoFeasibleActionError, 18

O
orig_action() (fimdp.core.ProductConsMDP

method), 19
other_action() (fimdp.core.ProductConsMDP

method), 19
out_iteraser() (fimdp.core.ConsMDP method), 17

P
parse_cap_from_prism() (in module fimdp.io), 26
pick_best_action() (in module

fimdp.energy_solvers), 25
PickFirstStrategy (class in fimdp.core), 18
prism_to_consmdp() (in module fimdp.io), 26
process_action() (fimdp.dot.consMDP2dot

method), 22
process_state() (fimdp.dot.consMDP2dot

method), 22
product_energy() (in module fimdp.explicit), 25
ProductConsMDP (class in fimdp.core), 18
ProductSelector (class in fimdp.core), 19
ProductSelectorWrapper (class in fimdp.core), 20

R
remove_action() (fimdp.core.ConsMDP method),

17
reset() (fimdp.core.Simulator method), 21
reset() (fimdp.core.Strategy method), 21
run() (fimdp.utils.Duplicator method), 28

S
select_action() (fimdp.core.CounterSelector

method), 18
select_action() (fimdp.core.ProductSelector

method), 20
select_action() (fimdp.core.ProductSelectorWrapper

method), 20
select_action() (fimdp.core.SelectionRule

method), 20
SelectionRule (class in fimdp.core), 20
set_reload() (fimdp.core.ConsMDP method), 17
show() (fimdp.core.ConsMDP method), 17

show() (fimdp.energy_solvers.BasicES method), 23
simulate() (fimdp.core.Simulator method), 21
Simulator (class in fimdp.core), 21
start() (fimdp.dot.consMDP2dot method), 22
state_succs() (fimdp.core.ConsMDP method), 17
state_with_name() (fimdp.core.ConsMDP

method), 17
storm_sparsemdp_to_consmdp() (in module

fimdp.io), 27
Strategy (class in fimdp.core), 21
structure_change() (fimdp.core.ConsMDP

method), 17

U
uniform() (in module fimdp.distribution), 22
update() (fimdp.core.CounterSelector method), 18
update() (fimdp.core.ProductSelector method), 20
update_state() (fimdp.core.Strategy method), 21

W
WrongCallOrderError, 21

34 Index

	Introduction
	Authors
	Installation
	Citation Info
	Support
	License
	Detailed Contents
	Documentation
	License

	Indices and Search
	Python Module Index
	Index

